3.1.78 \(\int (e x)^{-1+3 n} (a+b \text {sech}(c+d x^n))^2 \, dx\) [78]

3.1.78.1 Optimal result
3.1.78.2 Mathematica [F]
3.1.78.3 Rubi [A] (verified)
3.1.78.4 Maple [F]
3.1.78.5 Fricas [F(-1)]
3.1.78.6 Sympy [F]
3.1.78.7 Maxima [F]
3.1.78.8 Giac [F]
3.1.78.9 Mupad [F(-1)]

3.1.78.1 Optimal result

Integrand size = 24, antiderivative size = 363 \[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\frac {a^2 (e x)^{3 n}}{3 e n}+\frac {b^2 x^{-n} (e x)^{3 n}}{d e n}+\frac {4 a b x^{-n} (e x)^{3 n} \arctan \left (e^{c+d x^n}\right )}{d e n}-\frac {2 b^2 x^{-2 n} (e x)^{3 n} \log \left (1+e^{2 \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-i e^{c+d x^n}\right )}{d^2 e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,i e^{c+d x^n}\right )}{d^2 e n}-\frac {b^2 x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{2 \left (c+d x^n\right )}\right )}{d^3 e n}+\frac {4 i a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,-i e^{c+d x^n}\right )}{d^3 e n}-\frac {4 i a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,i e^{c+d x^n}\right )}{d^3 e n}+\frac {b^2 x^{-n} (e x)^{3 n} \tanh \left (c+d x^n\right )}{d e n} \]

output
1/3*a^2*(e*x)^(3*n)/e/n+b^2*(e*x)^(3*n)/d/e/n/(x^n)+4*a*b*(e*x)^(3*n)*arct 
an(exp(c+d*x^n))/d/e/n/(x^n)-2*b^2*(e*x)^(3*n)*ln(1+exp(2*c+2*d*x^n))/d^2/ 
e/n/(x^(2*n))-4*I*a*b*(e*x)^(3*n)*polylog(2,-I*exp(c+d*x^n))/d^2/e/n/(x^(2 
*n))+4*I*a*b*(e*x)^(3*n)*polylog(2,I*exp(c+d*x^n))/d^2/e/n/(x^(2*n))-b^2*( 
e*x)^(3*n)*polylog(2,-exp(2*c+2*d*x^n))/d^3/e/n/(x^(3*n))+4*I*a*b*(e*x)^(3 
*n)*polylog(3,-I*exp(c+d*x^n))/d^3/e/n/(x^(3*n))-4*I*a*b*(e*x)^(3*n)*polyl 
og(3,I*exp(c+d*x^n))/d^3/e/n/(x^(3*n))+b^2*(e*x)^(3*n)*tanh(c+d*x^n)/d/e/n 
/(x^n)
 
3.1.78.2 Mathematica [F]

\[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx \]

input
Integrate[(e*x)^(-1 + 3*n)*(a + b*Sech[c + d*x^n])^2,x]
 
output
Integrate[(e*x)^(-1 + 3*n)*(a + b*Sech[c + d*x^n])^2, x]
 
3.1.78.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 236, normalized size of antiderivative = 0.65, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {5963, 5959, 3042, 4678, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e x)^{3 n-1} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx\)

\(\Big \downarrow \) 5963

\(\displaystyle \frac {x^{-3 n} (e x)^{3 n} \int x^{3 n-1} \left (a+b \text {sech}\left (d x^n+c\right )\right )^2dx}{e}\)

\(\Big \downarrow \) 5959

\(\displaystyle \frac {x^{-3 n} (e x)^{3 n} \int x^{2 n} \left (a+b \text {sech}\left (d x^n+c\right )\right )^2dx^n}{e n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {x^{-3 n} (e x)^{3 n} \int x^{2 n} \left (a+b \csc \left (i d x^n+i c+\frac {\pi }{2}\right )\right )^2dx^n}{e n}\)

\(\Big \downarrow \) 4678

\(\displaystyle \frac {x^{-3 n} (e x)^{3 n} \int \left (a^2 x^{2 n}+b^2 \text {sech}^2\left (d x^n+c\right ) x^{2 n}+2 a b \text {sech}\left (d x^n+c\right ) x^{2 n}\right )dx^n}{e n}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x^{-3 n} (e x)^{3 n} \left (\frac {1}{3} a^2 x^{3 n}+\frac {4 a b x^{2 n} \arctan \left (e^{c+d x^n}\right )}{d}+\frac {4 i a b \operatorname {PolyLog}\left (3,-i e^{d x^n+c}\right )}{d^3}-\frac {4 i a b \operatorname {PolyLog}\left (3,i e^{d x^n+c}\right )}{d^3}-\frac {4 i a b x^n \operatorname {PolyLog}\left (2,-i e^{d x^n+c}\right )}{d^2}+\frac {4 i a b x^n \operatorname {PolyLog}\left (2,i e^{d x^n+c}\right )}{d^2}-\frac {b^2 \operatorname {PolyLog}\left (2,-e^{2 \left (d x^n+c\right )}\right )}{d^3}-\frac {2 b^2 x^n \log \left (e^{2 \left (c+d x^n\right )}+1\right )}{d^2}+\frac {b^2 x^{2 n} \tanh \left (c+d x^n\right )}{d}+\frac {b^2 x^{2 n}}{d}\right )}{e n}\)

input
Int[(e*x)^(-1 + 3*n)*(a + b*Sech[c + d*x^n])^2,x]
 
output
((e*x)^(3*n)*((b^2*x^(2*n))/d + (a^2*x^(3*n))/3 + (4*a*b*x^(2*n)*ArcTan[E^ 
(c + d*x^n)])/d - (2*b^2*x^n*Log[1 + E^(2*(c + d*x^n))])/d^2 - ((4*I)*a*b* 
x^n*PolyLog[2, (-I)*E^(c + d*x^n)])/d^2 + ((4*I)*a*b*x^n*PolyLog[2, I*E^(c 
 + d*x^n)])/d^2 - (b^2*PolyLog[2, -E^(2*(c + d*x^n))])/d^3 + ((4*I)*a*b*Po 
lyLog[3, (-I)*E^(c + d*x^n)])/d^3 - ((4*I)*a*b*PolyLog[3, I*E^(c + d*x^n)] 
)/d^3 + (b^2*x^(2*n)*Tanh[c + d*x^n])/d))/(e*n*x^(3*n))
 

3.1.78.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4678
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*((c_.) + (d_.)*(x_))^(m_.) 
, x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^m, (a + b*Csc[e + f*x])^n, x], 
 x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[m, 0] && IGtQ[n, 0]
 

rule 5959
Int[(x_)^(m_.)*((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbo 
l] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Sech[c + d*x] 
)^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m 
 + 1)/n], 0] && IntegerQ[p]
 

rule 5963
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), 
x_Symbol] :> Simp[e^IntPart[m]*((e*x)^FracPart[m]/x^FracPart[m])   Int[x^m* 
(a + b*Sech[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
 
3.1.78.4 Maple [F]

\[\int \left (e x \right )^{-1+3 n} {\left (a +b \,\operatorname {sech}\left (c +d \,x^{n}\right )\right )}^{2}d x\]

input
int((e*x)^(-1+3*n)*(a+b*sech(c+d*x^n))^2,x)
 
output
int((e*x)^(-1+3*n)*(a+b*sech(c+d*x^n))^2,x)
 
3.1.78.5 Fricas [F(-1)]

Timed out. \[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\text {Timed out} \]

input
integrate((e*x)^(-1+3*n)*(a+b*sech(c+d*x^n))^2,x, algorithm="fricas")
 
output
Timed out
 
3.1.78.6 Sympy [F]

\[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\int \left (e x\right )^{3 n - 1} \left (a + b \operatorname {sech}{\left (c + d x^{n} \right )}\right )^{2}\, dx \]

input
integrate((e*x)**(-1+3*n)*(a+b*sech(c+d*x**n))**2,x)
 
output
Integral((e*x)**(3*n - 1)*(a + b*sech(c + d*x**n))**2, x)
 
3.1.78.7 Maxima [F]

\[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\int { {\left (b \operatorname {sech}\left (d x^{n} + c\right ) + a\right )}^{2} \left (e x\right )^{3 \, n - 1} \,d x } \]

input
integrate((e*x)^(-1+3*n)*(a+b*sech(c+d*x^n))^2,x, algorithm="maxima")
 
output
-2*b^2*e^(3*n)*x^(2*n)/(d*e*n*e^(2*d*x^n + 2*c) + d*e*n) + 1/3*(e*x)^(3*n) 
*a^2/(e*n) + integrate(4*(a*b*d*e^(3*n)*e^(d*x^n + 3*n*log(x) + c) + b^2*e 
^(3*n)*x^(2*n))/(d*e*x*e^(2*d*x^n + 2*c) + d*e*x), x)
 
3.1.78.8 Giac [F]

\[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\int { {\left (b \operatorname {sech}\left (d x^{n} + c\right ) + a\right )}^{2} \left (e x\right )^{3 \, n - 1} \,d x } \]

input
integrate((e*x)^(-1+3*n)*(a+b*sech(c+d*x^n))^2,x, algorithm="giac")
 
output
integrate((b*sech(d*x^n + c) + a)^2*(e*x)^(3*n - 1), x)
 
3.1.78.9 Mupad [F(-1)]

Timed out. \[ \int (e x)^{-1+3 n} \left (a+b \text {sech}\left (c+d x^n\right )\right )^2 \, dx=\int {\left (a+\frac {b}{\mathrm {cosh}\left (c+d\,x^n\right )}\right )}^2\,{\left (e\,x\right )}^{3\,n-1} \,d x \]

input
int((a + b/cosh(c + d*x^n))^2*(e*x)^(3*n - 1),x)
 
output
int((a + b/cosh(c + d*x^n))^2*(e*x)^(3*n - 1), x)